« 2021年8月 | トップページ | 2022年1月 »

2021年10月

2021年10月15日 (金)

無帰還電流駆動ヘッドホンアンプ改良 (基板頒布あり)

Hpa0


【訂正情報】
・2021/10/21
Q9,Q11,Q21,Q23(2SA1020)のHFEが間違っていました。マニュアルおよび回路図の記載を280→240に訂正しました。


以前開発した、無帰還電流駆動ヘッドホンアンプを改良して基板を起こしたので報告する。

無帰還電流駆動ヘッドホンアンプを開発試作したのは2016年のことで、製作記事をこのブログにもアップした
その後、手作りアンプの会2016年冬のお寺大会に出品したところ、ありがたいことに最優秀賞をいただいた
手作りアンプの会での評価は、実際の試聴による音質に重きが置かれていて、評価されたことはとてもうれしかった。
作ってみたいという人が何人かいたため、基板を起こそうとも思ったのだが、いくつか問題点があって、どうしようか考えているうちに5年経ってしまった(^-^;

まず、この無帰還電流駆動ヘッドホンアンプとはどういうものなのか、簡単に説明したい。
通常、スピーカーやヘッドホンは電圧で駆動する。つまり入力信号に比例した出力電圧で負荷を駆動する。この場合、負荷の状態はまったく無関係で、たとえスピーカーがつながっていなくても電圧で音楽信号が出力される。逆にスピーカー端がGNDとショートされていたら、出力電流が無限に流れるので、アンプが壊れるかヒューズが飛ぶ。
対して、電流駆動の場合は、負荷に対して入力信号に比例した電流で負荷を駆動する。たとえ出力がショートされても問題なく出力電流が流れるため、スピーカー出力をショートするタイプの保護回路が使える。出力がオープンの場合は、負荷インピーダンスが無限大になるため、そこに電流を流すように動作して、出力はクリップしてしまう。
通常、スピーカーやヘッドホンは電圧駆動をする前提で、電圧駆動した時にフラットな特性が出るように開発、設計されている。
これを電流駆動するとどうなるかというと、スピーカーやヘッドホンのインピーダンス特性に沿った音圧特性で駆動される。
通常、スピーカーやイヤホンのインピーダンス特性はどのようになっているかというと、最低共振周波数f0で最大になり、その後一旦下がるが、高域では徐々に上昇する。
こういった特性を持ったスピーカーやイヤホンでも、通常の電圧駆動をすることで、フラットな特性を得るわけだが、電流駆動するとインピーダンス特性に沿った音圧特性になるのでインピーダンスが上昇するf0や高域が増強される。
見方を変えれば、インピーダンスが上昇するポイントは、そのスピーカーやヘッドホンが鳴らすのを得意とする帯域なので、その得意な帯域を伸び伸びと鳴らさせてあげる!というアンプだということもできる(こじつけくさくないか?)
そういうわけで、ほとんどのスピーカーやヘッドホンは電流駆動すると、f0付近と高域が持ち上がって、ドンシャリ傾向の音になる。
ただし、もしインピーダンス特性がフラットなスピーカーやヘッドホンなら、電圧駆動、電流駆動で差が出にくいとも考えられる。(もっとも出力インピーダンスがまったく真逆なので、ダンピング特性の差は出るだろうと思われるが)

そもそも無帰還電流駆動ヘッドホンアンプは、その前身となる無帰還電流駆動アンプをヘッドホン用にリメイクしたものだ。
無帰還電流駆動アンプはもともと、オーラトーン5Cを鳴らすための専用アンプとして開発したものだ。

さて、上述のように、電流駆動アンプの特徴として出力をショートするタイプの保護回路が組めるので、ミュート&保護回路のリレー接点による音質劣化に悩まされないで済む。ただ、DCが出力されて保護回路が働いたということは、アンプに何か異常がある可能性があるので、その状態で出力をGNDに短絡すれば事故が起きる可能性がある。そのため、無帰還電流駆動アンプでは、保護回路動作時は出力をショートするとともに、SSR(ソリッドステートリレー)を使ってAC100V電源を遮断するという構成にした。

無帰還電流駆動ヘッドホンアンプの場合は、バッテリー駆動ということもあって、そこまでの検討はしていなかった。ショート方式の保護回路には欠点があって、出力にDCを検出したときに出力端をショートすると、検出されていたDCが0になってしまうので、保護回路が解除される。するとまたDCが発生し……ということ繰り返してしまう。つまりひとたび保護回路が働いたらラッチがかかって、リセットしない限り再起動できないような仕掛けが必要になる。そういう意味では上で説明した無帰還電流駆動アンプのACを落としてしまうやり方は合理的だ。
ヘッドホンアンプの場合、バッテリー駆動だし、ヒューズかポリスイッチでも入れとけばいいかな……でもなあ、電源のインピーダンスが上がるのできもちわるいよなあ……やるとしたら±両方の電源を同時に落とす仕掛けも必要だし……うーんうーん……とかやっているうちに5年の歳月が(^-^;

今回はちょっとがんばって±のバッテリー電源を両方遮断する回路を設計して搭載した。
これでいちばん大きな問題点がひとつ解決した(^-^)
ただ、少しスイッチの構成が特殊で、電源ONのタクトスイッチSW1と電源OFFのタクトスイッチSW2が別になっていて、ON時はSW1を長押し、OFF時はSW2を押す、という構成になった。ロジック回路かマイコンを使えばスイッチひとつでもできると思うが、どうもアナログアンプにデジタル回路を積む気になれなかったので、今回のような構成になった。

あとは細々した問題点として、前回の設計では終段に2SA1668/2SC4382を使っていたが、これでは大きすぎて小型化が難しい。今回はこれらを2SA1020/2SC2655に変更することで小型化した。
次に、前回はニッカド電池を8本つかって±4.8Vの構成にしたが、これでは大きくなりすぎる上に電池持ちもよくないので、これを±3.8Vのリチウムイオン電池にした。
動作電圧を下げたことで、保護回路も定数変更した。保護回路は前回同様、±150mV以上のDCを検出すると働く。

最終的な回路を図1,図2に示す。図1がアンプ回路で、図2が電源と保護回路だ。
見やすいきちんとした図面は、この記事の最後に頒布用のマニュアルをリンクするのでそちらを参照してほしい。

Hpac_sch
図1.無帰還電流駆動ヘッドホンアンプ回路(片チャンネル)


Protectsch
図2.電源回路および保護回路


図2の左上にあるJ3,J4がそれぞれマイナス側とプラス側のバッテリー入力で、そのすぐ右側がMOSFETを使った電源ON/OFF回路だ。マイナス側のON/OFFはプラス側に追従するようになっている。
同じ図2の中央より下の回路はDC検出保護回路で、従来トランジスタのVBEに反応して0.6V以上でプロテクトがかかる典型的な回路に対して、ショットキーダイオードを使って基準電圧を底上げすることで0.15Vでプロテクトがかかるようにしている。

このあたりの開発経緯も、前回の無帰還電流ヘッドホンアンプの記事に書かれているので参照してほしい。

今回設計した基板による諸特性を以下に紹介する。

まずはひずみ率雑音特性。左右チャンネルにつき、それぞれ負荷が33Ω、100Ωの場合のTHD+N(%)を図3~図6に示す。

Thdn33_l Thdn33_r
図3.Lch 33Ω負荷 THD+N               図4.Rch 33Ω負荷 THD+N



Thdn100_l Thdn100_r
図5.Lch 100Ω負荷 THD+N              図6.Rch 100Ω負荷 THD+N


ひずみ率雑音特性THD+Nは、ボトムでおよそ0.03%、実用域で0.1%以下で、これは前回とほぼ同じだ。

次に周波数特性。
周波数対ゲインのグラフを図7、図8に示す。L、R同等だったので、Lchのみ。

Ftoku33l Ftoku100l
 図7.周波数ゲイン特性 33Ω負荷(Lch)           図8.周波数ゲイン特性 100Ω負荷(Lch)

100Ω負荷では-3dBポイントが1MHz、33Ω負荷では1MHz超となり、前回よりも改善した。


次は方形波出力波形。
これもL、Rで差がなかったのでLchのみ、33Ω、100Ω負荷に対してそれぞれ10kHz、100kHの波形を図9~図12に示す。

10khz33ohml 100khz33ohml
図9.方形波出力33Ω10kHz(Lch)          図10.方形波出力33Ω100kHz(Lch)

10khz100ohml 100khz100ohml
図11.方形波出力100Ω10kHz(Lch)          図12.方形波出力100Ω100kHz(Lch)

以上のように、オーバーシュートやリンギングは一切ないので、位相補償は行っていない。

次は出力インピーダンス。
今回は1kΩと2kΩ負荷を切り替えてのON/OFF法で測定した。これもL、Rで大差ないので、Lchのみ表1に示す。

表1.出力インピーダンス(Lch)
Impedancel_20211017223901

前回の測定結果は11kΩだったので悪化しているが、測定方法の違いも影響があるかもしれない。
ヘッドホンのインピーダンスが16Ω~100Ω程度だと考えれば十分な値だろう。

最後に主要諸元を表2にまとめておく。

表2.主要諸元
Syogen

音質については電流駆動故に、使用するヘッドホン、イヤホンの個性が非常によく出る。
普段使いのパイオニアHDJ-1500とは相性がよく、低域、高域が若干持ち上がり気味で
メリハリの強い、なおかつクリアな音質となった。
ヘッドホン、イヤホンに対する音質の違いについても前回の記事で書いているので参照してほしい。

2021/10/18追記
3Dプリンタで専用ケースを製作した。単三型(14500)リチウムイオン電池がそのまま入れられるように、電池ホルダを一体形成した。
写真1にケース入りのヘッドホンアンプ(下)とスーパーサンプリングSDプレイヤーSSSDP4490(上)を示す。
写真2はフタを外したところ。

Hpacincase
写真1.今回製作した無帰還電流駆動ヘッドホンアンプ(下)とスーパーサンプリングSDプレイヤー(上)


Hpacincase2
写真2.フタを外したところ。左側の電池は単三型リチウムイオン電池2本。


ケースのstlデータ
ダウンロード - 20211017hpac_top000.zip



【基板頒布のお知らせ】
この記事の無帰還電流駆動ヘッドホンアンプ生基板をご希望の方に頒布します。
生基板1枚と、製作説明書と回路図、部品表等の資料、LTSPICEのシミュレーションファイルをセットで
1880円(税、送料込み)で頒布します。(自力で部品収集、部品選別、調整できる方が対象です。)

ご希望の方は表題に「無帰還電流ヘッドホンアンプ基板頒布」、
本文にお名前、送付先郵便番号、ご住所、電話番号をお書きのうえ、

dj_higo_officialアットhigon.sakura.ne.jp
(アットを@に替えてお送りください)

までメールをお送りください。

代金の振込先のご案内メールをお送りします。入金が確認でき次第発送します。

製作マニュアル、回路図、部品表、その他

| | | コメント (0)

2021年10月 9日 (土)

LTspiceでフォノイコライザシミュレーション

以前、フォノイコライザをIIRフィルタで構成してFPGAに実装する記事を書いたが、今回はLTspiceでフォノイコライザのシミュレーションを行ったので、紹介する。

LTspiceでのシミュレーションでは回路に対してトランジェント解析で波形の応答を見ることもできるし、AC解析で周波数特性を見ることもできるが、ほかに非常におもしろい機能があって、WAVファイル(音声データ)を入力して、シミュレーション結果を同じくWAVファイルとして出力することができる。
今回はレコードからフォノイコライザなしでダイレクトリッピングしたWAVファイルを、LTspiceでのフォノイコライザ回路シミュレーションを通してWAVファイルで出力する検証を行った。


1.実際に使用しているフォノイコライザ回路
図1に実際に部屋で使用しているフォノイコライザの回路を示す。使用カートリッジはDL-103。

Usingeqsch
図1.実際に使用しているフォノイコライザ回路
MJの安井章氏の回路を参考にして設計した。

図1の回路ではカートリッジ入力を最初のオペアンプで120倍したあとCRイコライザを通し、次段で100倍増幅して、カップリングコンデンサを通して出力している。電源はエネループを8個使って±4.8Vとしている。


2.シミュレーション用回路
シミュレーションに使う回路は基本的に実使用中の図1の回路と同じだが、オペアンプを電圧制御電圧源に置き換えている。図2にオペアンプの非反転増幅回路と、電圧制御電圧源を使った帰還型増幅回路の置き換えを示す。

Opampvsvdv
図2.オペアンプ非反転増幅回路の、電圧制御電圧源での置き換え
電圧制御電圧源のゲインを1000万倍(140dB)として、負帰還増幅器を構成している。

図2ではオペアンプを使った非反転の10倍アンプを、電圧制御電圧源を使った10倍アンプに置き換えている。
電圧制御電圧源のゲインは1000万倍として、1/10の帰還をかけることでオペアンプ回路と同等の機能を持たせている。

ただ、電圧制御電圧源はゲインが自由に設定できるので、単に図3のようにしてもよい。

Vdv20db
図3.ゲイン10倍の電圧制御電圧源

今回評価するフォノイコライザ回路は、図3のように電圧制御電圧源に直接必要なゲインをもたせるやり方で、オペアンプを置き換えることにする。
今回評価したシミュレーション回路を図4に示す。

Simeq_wav
図4.今回使用したフォノイコライザシミュレーション回路
レコードのダイレクトリッピングゲインを160倍としたため、フォノイコライザのゲインは入力側32倍、出力側2倍のトータル64倍とした。またオフセットは無視できるのでカップリングコンデンサは省略した。

この回路の周波数特性を図5に示す。

Eq_gainphase
図5.今回の回路のAC解析

シミュレーション用のファイルは以下。
ダウンロード

3.WAVファイルを使ったシミュレーション手順
①LTspiceに回路を入力する
・回路の入力に上記wavファイルを割り付けるが、回路入力では単に電圧源(voltage source)を使う。
②実際に使用するwavファイルを用意する。
・今回は44.1kHz16bitステレオのwavファイルを使う。長いとシミュレーションに時間がかかるので、短いものを使う。(40秒の曲を処理するのに30分以上かかる)
・用意したwavファイルをLTspiceの回路(.ascファイル)と同じホルダに入れておく。ファイル名は任意だが、スペースは使えない。
・今回実際に使用したwavファイル名は、"night_in_tunisia_Direct40sec.wav"
③回路に対してwavファイルの入出力設定を記述する
・入力の電圧源(図4ではv4)を右クリックして"advanced"をクリックして詳細設定に入る。
・PWL FILEを選び、BrowseからファイルタイプをAll Files(*.*)として、上で用意したwavファイルを設定する。
●回路に戻ると電圧源のソースが”PWL file=night_in_tunisia_Direct40sec.wav”と表示されているので、これを右クリックして、手入力で編集し、
"wavefile=night_in_tunisia_Direct40sec.wav channel=0"
に変更する。
・同じようにv3に対して"wavefile=night_in_tunisia_Direct40sec.wav channel=1"を設定する。
・.opボタンを押して、".wave soundout00.wav 16 44.1k V(voutL) V(voutR)"と入力して、回路上に貼り付ける。soundout00.wavは出力されるファイル名(任意)。
・SimulateのEdit Simulation CmdのTransientタブで、
 Stop time = 40(今回のwavの長さ)
   Time to start saving data = 0
   Maximum Time step = 0.708u(1411kbpsの逆数)
としてOK。".tran 0 40 0 0.708u"が回路図上に配置される。

以上ができたら、SimulateのRun(走るボタン)を実行すると、しばらく演算した後、同じホルダに出力ファイル"soundout00.wav"が生成される。
※とにかく実行には時間がかかるので、最初は短いファイル(数秒レベル)で確認してみるとよい。

4.シミュレーション結果
上述の通り、DL-103からゲイン160倍でダイレクトリッピングしたファイルと、処理後の出力ファイルは次の通り。

・ダイレクトリッピングファイル
night_in_tunisia_Direct40sec.wav

・フォノイコライザシミュレーション出力ファイル
soundout00.wav

ちなみにこの音源は、
Hot Salsa meets Swedish Jazz
というLPに収録されたお気に入りの一曲です。

順序が前後してしまったが、ダイレクトリッピングに使用した回路を図6に示す。


Directripsch
図6.ダイレクトリッピングに使用した回路


5.まとめ
以上のように、LTspiceを使って、wavファイルの信号処理を行うことができる。
・今回はオペアンプの代わりに電圧制御電圧源を使ったが、もちろんオペアンプを使ったシミュレーションもできる。ただし、シミュレーションの時間が猛烈にかかる。(以前オペアンプでシミュレーションしたら、3分の曲を処理するのに一晩かかった)
・シミュレーションは仮想現実であり、今回の実験は現世のwavファイルを仮想現実世界で処理して、それをまた現世に持って帰ってくる、というような感覚がして非常におもしろいと思う。
・レコードのダイレクトリッピングを今回の方法で処理するやり方は、膨大な時間がかかることから実用的ではないが、ごく短いサンプル音源を使って、エフェクター回路の検証を行うといったような使い方は想定できる。

実際に音が出ると感動するので、ぜひやってみてください(^-^)

| | | コメント (0)

« 2021年8月 | トップページ | 2022年1月 »